Plate tectonics and mantle convection
(1) 瀬野徹三, プレートテクトニクスの基礎, 朝倉書店, 1995.
(2) DeMets, C., Gordon, R. G., Argus, D. F. and Stein, S., Current plate motions, Geophys. J. Int., 101, 425–478, 1990.
(3) Müller, R. D., Sdrolias, M., Gaina, C. and Roest, W. R., Age spreading rates and spreading asymmetry of the world's ocean crust, Geochem. Geophys. Geosyst., 9, Q04006, doi:10.1029/2007GC001743, 2008.
(4) Institute for Geophysics, The University of Texas: Plate tectonic reconstructions at UTIG,
(5) Nakakuki, T., Hamada, C., and Tagawa, M., Generation and driving forces of plate-like motion and asymmetric subduction in dynamical models of an integrated mantle–lithosphere system, Phys. Earth Planet. Inter., 166, 128–146, 2008.
(6) NASA: Solar System Exploration,
(7) National Geophysical Data Center, NOAA: ETOPO1 Global relief,
(8) 川勝均(編), 地球ダイナミクスと地震波トモグラフィー, 朝倉書店, 2002.
(9) Fukao, Y., Obayashi, M., Nakakuki, T. and the Deep Slab Project Group, Stagnant slab: a review, Annu. Rev. Earth Planet. Sci., 37, 19–46, 2009.
(10) Stadler G., Gurnis, M., Burstedde, C., Wilcox, L. C., Alisic, L. and Ghattas, O., The dynamics of plate tectonics and mantle flow: From local to global scales, Science, 329, 1033–1038, 2010.
(11) Nakakuki, T. and Mura, E., Dynamics of slab rollback and induced back-arc basin formation, Earth Planet. Sci. Lett., 361, 287–297, 2013.
(12) Wong, T., Solomatov, V., Towards scaling laws for subduction initiation on terrestrial planets: constraints from two-dimensional steady-state convection simulations, Prog. Earth Planet. Sci., 2:18, doi:10.1186/s40645-015-0041, 2015.
(13) Fukao, Y. and Obayashi, M., Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity, J. Geophys. Res., 118, 5920-5938, 2013.
(14) Lallemand, S., Heuret, A., and Boutelier, D., On the relationships between slab dip, back-arc stress, upper plate absolute motion, and crustal nature in subduction zones, Geochem. Geophys. Geosyst., 6, Q09006, doi:10.1029/2005GC000917, 2005.
(15) Yamazaki, D., Yoshino, T., and Nakakuki, T., Interconnection of ferro-periclase controls subducted slab morphology at the top of the lower mantle, Earth Planet. Sci. Lett., 403, 352-357, 2015.
(16) クルティヨ, V. E., 論争:恐竜はなぜ絶滅したか=火山大噴火説, 日経サイエンス, 第20巻12月号, 49–65, 1990.
(17) Kellog, L. H., Hager, B. H. and van der Hilst, R., Compositional stratification in the deep mantle, Science, 283, 1881–1884, 1999.
(18) Kaneko, T., Nakakuki, T. and Iwamori, H., Mechanical coupling of the motion of the surface plate and the lower mantle slab: Effects of viscosity hill, yield strength, and depth-dependent thermal expansivity, Phys. Earth Planet. Intr. 294, 106274, 2019.
(A1) Argus, D. F., and R. G. Gordon, No-net rotation model of current plate velocities, Geophys. Res. Lett., 18, 2039-2042, 1991.
(A2) Davies, J. H., Global map of solid Earth surface heat flow, Geochem. Geophys. Geosyst. 14, 4608-4622, 2013.
(A3) Torsvik, T. H., M. A. Smethurst, K. Burke, and B. Steinberger, Large igneous provinces generated from the margins of the large low velocity provinces in the deep mantle, Geophys. J. Int., 167, 1447–1460, 2006.